Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy

1997 ◽  
Vol 162 (1) ◽  
pp. 199-225 ◽  
Author(s):  
T. Dalibor ◽  
G. Pensl ◽  
H. Matsunami ◽  
T. Kimoto ◽  
W. J. Choyke ◽  
...  
2013 ◽  
Vol 205-206 ◽  
pp. 451-456 ◽  
Author(s):  
Pavel Hazdra ◽  
Vít Záhlava ◽  
Jan Vobecký

Electronic properties of radiation damage produced in 4H-SiC by electron irradiation and its effect on electrical parameters of Junction Barrier Schottky (JBS) diodes were investigated. 4H‑SiC N‑epilayers, which formed the low‑doped N-base of JBS power diodes, were irradiated with 4.5 MeV electrons with fluences ranging from 1.5x1014 to 5x1015 cm-2. Radiation defects were then characterized by capacitance deep-level transient spectroscopy and C-V measurement. Results show that electron irradiation introduces two defect centers giving rise to acceptor levels at EC‑0.39 and EC‑0.60 eV. Introduction rate of these centers is 0.24 and 0.65 cm‑1, respectively. These radiation defects have a negligible effect on blocking and dynamic characteristics of irradiated diodes, however, the acceptor character of introduced deep levels and their high introduction rates deteriorate diode’s ON-state resistance already at fluences higher than 1x1015 cm‑2.


1999 ◽  
Vol 572 ◽  
Author(s):  
T. Henkel ◽  
Y. Tanaka ◽  
N. Kobayashi ◽  
H. Tanoue ◽  
M. Gong ◽  
...  

ABSTRACTStructural and electrical properties of beryllium implanted silicon carbide have been investigated by secondary ion mass spectrometry, Rutherford backscattering as well as deep level transient spectroscopy, resistivity and Hall measurements. Strong redistributions of the beryllium profiles have been found after a short post-implantation anneal cycle at temperatures between 1500 °C and 1700 °C. In particular, diffusion towards the surface has been observed which caused severe depletion of beryllium in the surface region. The crystalline state of the implanted material is well recovered already after annealing at 1450 °C. However, four deep levels induced by the implantation process have been detected by deep level transient spectroscopy.


2009 ◽  
Vol 615-617 ◽  
pp. 699-702 ◽  
Author(s):  
Sergey A. Reshanov ◽  
Wolfgang Bartsch ◽  
Bernd Zippelius ◽  
Gerhard Pensl

Lifetime measurements are performed on 4H-SiC pin power diodes (6.5 kV). The lifetime values in the base range from 1.1 s to 2.1 s; these values demonstrate the high quality of the 4H-SiC epilayer and the optimized device processing. The observed lifetimes are correlated with deep defect centers detected by deep level transient spectroscopy. The role of the Z1/2-center as a lifetime killer is discussed.


2011 ◽  
Vol 679-680 ◽  
pp. 265-268 ◽  
Author(s):  
Thanos Tsirimpis ◽  
S. Beljakova ◽  
Bernd Zippelius ◽  
Heiko B. Weber ◽  
Gerhard Pensl ◽  
...  

p-type 3C-SiC samples were implanted by iron (Fe) and investigated by means of deep level transient spectroscopy (DLTS). Corresponding argon (Ar) profiles with similar implantation damage were implanted in order to distinguish between iron-related defects and defects caused by implantation damage. Two donor-like iron-related centers were identified in p-type 3C-SiC.


2010 ◽  
Vol 645-648 ◽  
pp. 419-422
Author(s):  
Fei Yan ◽  
Robert P. Devaty ◽  
Wolfgang J. Choyke ◽  
Katsunori Danno ◽  
Giovanni Alfieri ◽  
...  

In this paper we describe an effort to find correlations between low temperature photoluminescence spectroscopy (LTPL) and deep level transient spectroscopy (DLTS) of electron irradiated samples annealed from 25 °C to 1700 °C in 100 °C steps. We report on thermal histories of defect centers created by 170 keV and 1 MeV electron irradiation, as observed by LTPL only. The DLTS results on "twin" samples are presented in a separate paper. Our results indicate that in n-type 4H SiC there is no correlation between the Z1/Z2 center in DLTS and the L1 peak of the DI center seen in LTPL. In p-type 4H SiC we do not find a correlation between a 350 meV DLTS peak above the valence band and the LTPL L1 peak of the DI center. Consequently, we cannot find evidence for a 350 meV ground state postulated in the “Pseudo–Donor” model [3].


2010 ◽  
Vol 645-648 ◽  
pp. 423-426 ◽  
Author(s):  
Sergey A. Reshanov ◽  
Svetlana Beljakowa ◽  
Bernd Zippelius ◽  
Gerhard Pensl ◽  
Katsunori Danno ◽  
...  

This paper comprises a systematic study of the thermal stability of defect centers observed in n- and p-type 4H-SiC by deep level transient spectroscopy (DLTS); the defects are generated by irradiation with high-energy electrons of 170 keV or 1 MeV.


Sign in / Sign up

Export Citation Format

Share Document